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Abstract  Informed by a cultural understanding of human sense-making, the mathematical identities 
of Grades 7–12 learners, teachers, and conventional curricula are explored. Due to a clash of values 
between mathematics and the humanities, a majority of learners do not achieve their mathematical 
potential. This frustrates both these learners and their teachers. A resolution to the conflict emerges 
from scrutinizing the conventional Plato-based (Platonist) mathematics’ ontology, epistemology, and 
axiology that convey anti-humanistic images of school mathematics, the antithesis to the majority of 
learners’ humanistic-oriented self-identities. Platonist mathematics is philosophically critiqued, reveal-
ing a choice amongst it being cultural, spiritual, or simply opportunistic. Its nineteenth-century anti-
humanist façade is replaced by evidence-based humanistic features that the original façade was meant 
to hide from learners and the general public for politically inspired reasons. These humanistic-oriented 
features of mathematics are transposed into a proposal for a humanistic school mathematics program 
that will engage a large proportion of learners (Grades 7–12) in the Western mathematics actually 
used by adults not employed in occupations requiring advanced Platonist mathematics with its highly 
hypothetical and abstract reasoning. A Platonist school mathematics program, however, will play an 
even a greater role in preparing the minority of learners for the advanced mathematics employment 
sector, some of whom may enrol in both programs. The article concludes with examples of humanistic 
mathematics lessons and modules.

Résumé  En nous appuyant sur une compréhension culturelle du processus de construction du sens 
chez l’être humain, nous explorons les identités mathématiques des apprenants de la 7e à la 12e an-
née, des enseignants et des programmes d’études traditionnels. En raison du conflit de valeurs entre 
le domaine des mathématiques et celui des lettres et sciences humaines, une majorité d’apprenants 
n’atteignent pas tout leur potentiel en mathématiques. Cette situation est frustrante pour ces apprenants 
comme pour leurs enseignants. Une solution à ce conflit se dessine dans l’examen ontologique, épisté-
mologique et axiologique de la logique mathématique traditionnelle fondée sur Platon (platonicienne) 
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montrant les mathématiques scolaires sous un angle anti-humaniste; ceci allant à l’encontre de l’identité 
personnelle orientée vers l’humanisme de la majorité des apprenants. D’un point de vue philosophique, 
les mathématiques platoniciennes sont critiquées, ce qui révèle un choix soit culturel, spirituel ou sim-
plement opportuniste. Sa façade anti-humaniste datant du 19e siècle est remplacée par des éléments hu-
manistes reposant sur des données probantes que la façade originelle devait dissimuler aux apprenants et 
à l’ensemble de la population pour des motifs politiquement motivés. Ces éléments humanistes reposant 
sur des données probantes des mathématiques se retrouvent dans une proposition en faveur d’un pro-
gramme scolaire humaniste des mathématiques qui mobilisera un grand nombre d’apprenants (de la 7e 
à la 12e année) des mathématiques en Occident qui sont en fait utilisées par des adultes qui n’occupent 
pas des professions exigeant des compétences avancées en mathématiques platoniciennes, celles-ci re-
quérant un haut niveau de raisonnement hypothético-déductif et abstrait. Cependant, un programme 
scolaire de mathématiques platoniciennes jouera un rôle encore plus grand dans la préparation de la 
minorité d’apprenants destinés au secteur de l’emploi nécessitant des mathématiques avancées, dont 
certains pourraient s’inscrire dans les deux programmes. Nous concluons l’article avec des exemples de 
cours et de modules de mathématiques humanistes.

Keywords  Humanistic · School mathematics · Culture conflicts · Values · Self-identities

Introduction

C. P. Snow (1953) famously identified two academic solitudes, the sciences and the humanities. Math-
ematics’ dictionary definition is “a group of related sciences, including algebra, geometry, and calculus; 
concerned with the study of number, quantity, shape, and space; and their interrelationships, by using a 
specialised notation” (Makins, 1994, p. 964). Snow urged the two academies to build bridges between 
their diverse ways of knowing, but he neglected to acknowledge those who embrace degrees of both 
ways. Transposed into a 2021 educational vernacular, Snow’s two solitudes could be thought of as STEM 
(science, technology, engineering, and mathematics) and non-STEM, respectively.

The sciences were shown to be broadly based subcultures within a nation’s mainstream culture 
(Aikenhead, 1996). Dorce (2020) correctly points out that for learners, the history of mathematics, 
for example, “can supply human roots to the subject” (p. 3). This coincides with one of the four Sas-
katchewan mathematics curriculum goals: understanding mathematics as a human endeavour. Students 
learning some historical human roots to mathematics sounds like a prime candidate for one of many 
bridges that C.P. Snow envisioned.

Drawing on Gilligan’s (1982) axiological theory, Ernest (2018) went into greater depth by contrasting 
her two clusters of values: “separation versus connection” (p. 194–195)—the sciences and humanities, 
respectively.

The separated position valorises rules, abstraction, objectification, impersonality, unfeelingness, 
dispassionate reason and analysis, and tends to be atomistic and thing-centred in focus. The con-
nected position is based on and valorises relationships, connections, empathy, caring, feelings 
and intuition, and tends to be holistic and human-centred in its concerns. (pp. 194–195, emphasis 
added)

In the context of school mathematics, Aikenhead (2017) explored the culture of Western (Platonist) 
mathematics compared to Indigenous mathematical systems and reviewed the literature on combining 
the two into “Indigenous culture-based school mathematics” (Aikenhead, 2020, p. 687).

In contrast, this article investigates a mainstream culture-based school mathematics in terms of 
learners embracing Gilligan’s separated or connected value clusters, regardless of their ancestry; in 
other words, (1) those learners whose self-identities (Darragh & Radovic, 2018; Ishimaru et al., 2015; 
Ruef, 2020) harmonise with a mathematician’s perspective, to varying degrees, and (2) those learners 
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having a humanistic perspective, more or less. The ways of viewing and understanding their worlds 
usually differ noticeably, although some will possess some combination of both perspectives. As 
explained in detail below (subsection Learners’ Mindsets), a large majority identifies with a human-
istic predisposition, whilst a small minority is most comfortable with a mathematical predisposition.

This article begins by clarifying the terms “humanistic school mathematics” and “culture” as used 
in this article. Their meanings frame the development of a proposal to renew the mathematics program 
for the majority of, but not all, learners in Grades 7 to 12. Today’s curriculum has not changed funda-
mentally since its inception in about 1850 (details are described below), but most teachers’ pedagogy 
is definitely twenty-first-century modern (Furr, 1996). A nineteenth-century school mathematics cur-
riculum could be revised to serve today’s future adults living in the twenty-first-century’s Digital Age.

The discussion that follows interrogates claims that learners hear from their mathematics pro-
gram that eventually causes about 37% of high school graduates to “hate” mathematics (Ipso, 2005), 
which in turn (a) causes them to shy away from using it as they try to function effectively in society 
and (b) as parents, they negatively influence their children’s predispositions about success at school 
mathematics, as any elementary teacher knows only too well.

This article concerns itself with the current mathematics program that creates conflicting subcul-
tures within school mathematics detrimental to many learners reaching their potential for success. 
This is not about the teachers; it is about the “highly restrictive, over-crowded, outdated curriculum” 
(Duchscherer et al., 2019, p. 63) that handcuffs teachers from innovating for the twenty-first century.

Reasons and research are laid out to support a humanistic mathematics program for about 70% 
of learners in Grades 7–12 (a calculation explained in subsection “Learners’ Mindsets”), for whom 
the current Plato-based (Platonist) mathematics program is generally obsolete, over-crowded, and 
irrelevant (Borovik, 2017; Noddings, 2017).

For the 30% of learners interested in considering future STEM employment, the high school’s 
precalculus program would not change significantly, other than adopting some aspects of the Interna-
tional Baccalaureate and including some individual or group projects on out-of-school mathematics-
related topics such as employment: What mathematics do “the vast majority of scientists, engineers, 
and actuaries” actually use on the job (Edwards, 2010)?

Humanistic Mathematics Education

“Those who have experienced mathematics as a depersonalised, uncontextualised, non-controversial, 
and asocial form of knowledge might very well consider the expression humanistic mathematics educa-
tion to be the epitome of an oxymoron” (Brown, 1996, p. 1289). Over the past 50 years or so, clusters of 
invisible colleges have been formed by mathematicians and educators who share one common viewpoint: 
their opposition to Platonist mathematicians’ absolutist philosophy of pure mathematics that eschews 
any human dimensions to its knowledge system. Their critiques of Platonist mathematics are represented 
in this article. The principal groups involved are the following (within each group listed, the founders 
are cited first, followed by a recent publication of the group, and then an example):

•	 Mathematics education culturalists: Wilder (1965, 1981), Aikenhead (2021a), and Larvor (2016); 
for example, workplace mathematics.

•	 Humanistic mathematicians: White (1974, 1976), Brown (1996), Skrivanos & Zhang (2013), 
and Sriraman (2017); for example, a history of key mathematicians. A Humanistic Mathematics 
Network Newsletter began circulating in 1987. The Journal of Humanistic Mathematics began 
publishing in 2001.
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•	 Critical mathematics educators: Skovsmose (1985, 1994), Ernest (2019), and Ernest et al. (2016); 
for example, a critique of mathematician’s ethics and politics in their mathematical modelling.

Some members of each group attend other groups’ meetings and contribute to their literature. Therefore, 
humanistic school mathematics does not have clearly defined borders. The citations in this article come 
from advocates in all three groups. The article ends with specific examples of humanistic mathematics 
lessons.

Culture

The language we personally use serves as an encyclopaedia of our lived dynamic cultures. Based on 
the work of Gutiérrez and Rogoff (2003), Bang and Medin (2010) provide an action-oriented notion of 
the term “culture”:

Although the construct of culture is problematic, people nevertheless “live culturally” … [by way 
of] a wide repertoire of sense-making practices that people participate in, particularly in every-
day contexts. …This understanding of culture implies that there is no cultureless or “neutral” 
perspective any more than a photograph…could be without perspective. In this sense, everything 
is cultured. (pp. 1014–1015, emphasis added).

Culture is a verb here rather than a noun (i.e., a classic noun rendition of culture is “the collection of 
customs, beliefs, rituals, tools, traditions, etc., of a group of people…” [Wilder, 1965, p. 282]). The verb 
form characterises humanistic school mathematics, and the verb form is prescient to resolving conflicts 
between the two clusters of subculture identities within school mathematics. For learners to experience 
mathematics as a humanistic endeavour, they must engage in a repertoire of its sense-making cultural 
practices (Boylan, 2016). This view lends itself to a school mathematics in which learners negotiate 
amongst multiple ways of understanding, dependent upon a learner’s self-identities (Darragh & Radovic, 
2018; Ishimaru et al., 2015; Nasir, 2002; Ruef, 2020). Ruef (2020) wrote.

To be successful in mathematics classes, students must negotiate and navigate the normative 
identity of the class—what counts as being “good at math.” Within the constraints of normative 
identity, students must also negotiate a personal doer-of-math identity: who they are within the 
context of this particular mathematics class. (p. 22).

This short broad-brush-stroke description of the complexities of cultures and subcultures in a math-
ematics classroom sets the context to analyse deeper into the identities of the “conflicting subcultures 
within school mathematics” stated in this article’s title.

Two Conflicting Subcultures

In North America, a large majority of learners and their teachers (Grades 7–12) become frustrated 
over a subliminal conflict between two different general sense-making practices: Western mathematics 
and the humanities. This is not a dichotomy. People can possess various degrees of both, and not at the 
expense of the other necessarily. Mathematics and the humanities tend to use a different language and 
implicit presuppositions. Therefore, frustration certainly arises, to differing degrees, between those 
whose general sense-making practices differ widely, enough to cause clashing subcultures within the 
mathematics-humanities non-dichotomy.

Resolving such clashes promises to improve many learners’ mathematical self-identities. Joseph 
(2011) identified aspects of the two clashing subcultures of interest here: “[pure mathematics] engenders 
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a sense of remoteness and irrelevance associated with the subject in many who study it and an ingrained 
elitism in many who teach it” (p. 75, emphasis added).

Mathematicians’ Mindset

There is a language of gatekeeping power that dictates pure mathematics is value-free, non-ideological, 
culture-free, purely objective in its use, and perfectly certain and accurate in descriptions of reality 
(Kennedy, 2018; Nasir et al., 2008). This makes pure mathematics to be non-humanistic (Corrigan et al., 
2004; Mukhopadhyay & Greer, 2001). Its globalised language controls learners through curriculum 
documents; graduation criteria; school examinations; politically motivated international tests such as 
PISA; and pervasively, mathematics’ high status as the general public’s indicator of smart people. This 
status arises from “the ideology of European superiority” (Joseph, 2011, p. 4) associated with Eurocen-
trism, for instance, “the supremacist position maintained by many mathematician educators who regard 
abstract mathematics as the crowning achievement of the human intellect, and school mathematics as 
the transmission of its products” (Mukhopadhyay & Greer, 2012, p. 860). For Indigenous culture-based 
school mathematics, this ideology had to be unlearned by teachers before they could be successful with 
Indigenous learners (Aikenhead, 2020).

Importantly, the “mathematically inclined” (Borovik, 2017, p. 323) naturally see abstract pure math-
ematics in their world all around them. Because this makes common sense to mathematicians, they 
assume anyone else can see what they see as well, if they work hard enough. However, most mathemati-
cians do not understand the mechanism by which their mind applies abstract mathematical presupposi-
tions and concepts to the everyday world around them. According to Einstein (1930; quoted in Director, 
2006), these abstractions are associated with images or forms that the mind first creates to represent 
the abstraction:

It seems that the human mind has first to construct forms independently, before we can find them 
in things. Kepler’s marvelous achievement is a particularly fine example of the truth that knowl-
edge cannot spring from experience alone, but only from the comparison of the inventions of the 
intellect with observed fact. (p. 113).

We now have a four-part mechanism to explain mathematicians’ sense-making practices, such as 
how they apply pure mathematics:

1.	 When viewing an object or event, a person’s mind recalls an invented image or form that represents 
an abstract concept for that person, as Einstein explained.

2.	 Their mind projects or superimposes that image or form onto a concrete object or event.
3.	 If there is a good enough fit, their mind deconstructs it by both focusing on features that best fit the 

image or form and ignoring other features that do not seem to conform to the image or form.
4.	 Their mind judges the best balance between the focussing and ignoring, thereby reconstructing a 

conformity between an abstract mathematical concept and an everyday object or event.

In short, the mechanism is image recall, projection, deconstruction, and reconstruction. It is usually an 
unconscious mental act. No wonder it seems easy to mathematicians and to people whose worldview 
harmonises to a significant degree with a mathematicians’ worldview.

Learners’ Mindsets

A large majority of learners intuitively feels that the language of school mathematics tends to be for-
eign to their lived sense-making experiences (Barta et al., 2014). Teachers tell them that mathematics 
is all around them, but they do not see it, as required by the academic standards of abstract school 
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mathematics. These learners’ sense-making practices entail a cultural language contextualised in social 
relationships or humanities-related cultural experiences. For them, “Mathematics becomes best under-
stood by how it is used” (p. 3). For example, this is the mathematics used by the general public who are 
not employed in advanced mathematical sectors of society.

The self-identities or worldviews of these learners do not harmonise with those of mathematicians’ 
worldviews to any significant degree (Cobern, 2000). Due to their humanities-oriented sense-making 
practices, these learners tend to find it extremely difficult or impossible to apply abstract pure math-
ematics to their everyday world as described by the four-part mechanism described above. As a result, 
conventional school mathematics in Grades 7 to 12 “is commonly seen as consisting essentially of 
computation and formulas, yielding exact and infallible answers, without relevance to everyday life, 
accessible only by experts, and not open to criticism” (Mukhopadhyay & Greer, 2001, p. 297), simply 
put, non-humanistic. “Many of the points raised in this chapter, and elsewhere in this book, are about 
mathematics education having a dehumanising effect on people” (Greer & Mukhopadhyay, 2012, p. 
245). These perceived features help explain the results of an Ipsos (2005) poll that found that 37% of 
adults in their 20 s and 30 s “hated” school mathematics.

The same Ipsos poll recorded the adults’ favourite school subjects. Mathematics was 31% compared 
to the humanities combination (English, History, Social Studies, Arts, Foreign Languages, and Reli-
gion/Philosophy) at 69%. This clearly suggests that the humanities’ “connected values” (Ernest, 2018, 
p. 194; Gilligan, 1982) would enrich a mathematics program’s context for this larger group of learners 
with their degrees of connected values.

Learners’ mindsets encompass their mathematics self-identities, which Aikenhead (2021a) represented 
on a continuum of six categories: the math-oriented, math-curious, math-interested, math-disinterested, 
math-shy, and math-phobic. These categories must be treated as tentative because a learner’s classification 
will depend on many changeable variables, such as the teacher, the particular topic, the success learners 
have enjoyed recently, and the time of year. Under no circumstance should these categories be used for 
streaming learners. Distinctions between adjacent categories are not made in this article.

According to the Ipsos poll, the first three categories comprise 31% of Grade 12 graduates whilst the 
last three categories make up 69%. These two figures were closely corroborated by Meyer and Aikenhead 
(2021) who synthesised the data on learners’ STEM orientation reported in three major projects: National 
Bureau of Economic Research STEM project (Card & Payne, 2017), U.S. Office of Technology Assess-
ment (Frederick, 1991), and PISA (OECD, 2019).

Their synthesised results showed that a small minority of about 26 and 30% of Grade 12 graduates 
in the provinces of Saskatchewan and Ontario (respectively) see themselves as “math-interested, math-
curious, or math-oriented learners” (Meyer & Aikenhead, 2021, p. 104). They feel comfortable, to 
varying degrees, believing that Platonist mathematics is value-fee, culture-free, decontextualised, and 
purely objective in its use.

This leaves a large majority of about 74 and 70% for Saskatchewan and Ontario, respectively. The 
30 and 70% figures will be used throughout this article. The continuum’s six categories have the fol-
lowing percentages of learners in each category: math-phobic (20), math-shy (24), math-disinterested 
(26), math-interested (20), math-curious (6), and math-oriented (4). This continuum of mathematics and 
humanities values and learners’ self-identities is a more realistic representation that avoids simplistic 
dichotomies such at STEM versus non-STEM learners. The 70% group often copes with school math-
ematics by either dropping out of school or by playing Fatima’s rules.

Fatima’s Rules

Fatima’s rules are a set of coping strategies used by learners. They were originally identified by sci-
ence education researcher Larson (1995) in a Grade 11 chemistry class. The strategies equally apply 
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to mathematics classes. Fatima was the most articulate amongst the students who explained to Larson 
how to pass Chemistry with a minimum of effort. Fatima’s rules explain the way many learners are able 
to pass their mathematics course, and some even with high grades. Learners become adept at making it 
appear as if meaningful learning has occurred, when it has not. It has been called “playing the system” 
in the vernacular, or “instrumental understanding [by the academy], defined as knowing how to carry 
out procedures without understanding, versus ‘relational understanding,’ which includes, in addition, 
knowing how and why such procedures work” (Ernest, 2018, p. 193).

Fatima’s rules are characterised by the language of these students’ pervasive cultural norm: “just 
deal with it” (Wood et al., 2009, p. 437). This means jumping through a series of hoops, mostly by 
rote memorisation, but also by such “passive-resistance mechanisms as accommodation, ingratiation, 
evasiveness, and manipulation” (Aikenhead, 2011, p. 114). Tobin and McRobbie (1997) documented a 
teacher’s complicity in playing Fatima’s rules: “There was a close fit between the goals of Mr. Jacobs 
and those of the students and satisfaction with the emphasis on memorisation of facts and procedures 
to obtain the correct answers needed for success on tests and examinations” (p. 366). “Any curriculum 
policy that inadvertently, but predictably, leads students or teachers to play Fatima’s rules is a policy 
difficult to defend educationally, even though the policy flourishes for political reasons” (Aikenhead, 
2006, p. 28, original emphasis).

An Implication

Hence, within school mathematics we can identify the following two types of repertoires of sense-
making practices—two conflicting subcultures:

1.	 The public face of pure mathematics (a.k.a. Platonist mathematics) held by almost all mathematics 
teachers and is attractive, in varying degrees, to math-oriented, math-curious, and math-interested 
learners whose mathematical self-identities harmonise to some degree with their teacher’s, because 
of their mutual degrees of preference for “separated values” (Ernest, 2018, p. 194; Gilligan, 1982).

2.	 The collective repertoires of diverse sense-making practices of the math-disinterested, math-shy, and 
math-phobic learners whose mathematical self-identities do not harmonise with their mathematics 
teacher’s, to differing degrees because of their preference for humanists’ “connected values” (Ernest, 
2018, p. 194; Gilligan, 1982).

This second subculture of learners requires humanistic mathematics learning experiences that exem-
plify mathematics is a symbolic technology for humans to forge relationships between themselves and 
their social and physical environments (Bishop, 1988). “Self-identity,” in terms of mathematics, is 
defined as “a socially produced way of being, as enacted and recognised in relation to learning math-
ematics. It involves stories, discourses and actions, decisions, and affiliations that people use to construct 
who they are in relation to mathematics, but also in interaction with multiple other simultaneously lived 
identities” (Darragh & Radovic, 2018). This is consistent with Ruef’s (2020) detailed descriptions.

These learners’ cultural self-identities must be engaged in order for non-superficial learning to take 
place. This usually occurs when they learn mathematics conveyed as being predominantly value-laden, 
culturally contextualised, ideology-related, and authentically subjective in its use. That is their everyday 
world. Such a humanistic mathematics course tends to engage this majority of learners to a great extent 
(Barta et al., 2014), because it significantly reduces learners’ cultural self-identity conflicts with con-
ventional mathematics classes (Aikenhead, 2017; Gijsbers et al., 2020). “We suggest that the alienation 
that many children in school, and adults out of school, feel towards mathematics is partly the result of 
the lack of connexions between their experience in mathematics classrooms and their experiences out 
of school” (Greer & Mukhopadhyay, 2012, p. 244).
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Conflict between the two subcultures also leads to serious miscommunication problems between 
mathematics teachers and their math-disinterested, math-shy, and math-phobic learners. Mathemat-
ics teachers have always applied mathematics implicitly to the world around them, so they have not 
experienced their large majority of learner’s consistent breakdowns when attempting to apply abstract 
mathematics to concrete events in the everyday world. As a result, the teachers’ language and expecta-
tions are at odds with the lived reality of the majority of learners. This is a serious blind spot in many 
teacher’s mindsets (Aikenhead, 2021b). It prevents teachers from understanding these learners when 
they ask in frustration, “When will I ever use this stuff?” So a teacher’s response, composed from a 
Platonist standpoint, does not make common sense to these learners.

These conflicts within mathematics classrooms lead to low engagement and consequently lower 
achievement (Ruef, 2020). Learners’ proficiencies can be raised somewhat by specific pedagogical 
interventions, but never as high as the popular, slogan-like expectations that bombard mathematics 
teachers; for example, “All students can learn math to the highest levels” (Boaler, 2020, p. 1). This 
ideology is welcomed by the 30% of learners, however, the future employees of mathematically rich 
workplaces—the potential STEM people.

What happens to these high school graduates when enrolled in university science and engineering 
programs? The U.S. Office of Technology Assessment conducted a 16-year longitudinal study, begin-
ning with four-million Grade 10 students and following up to PhDs (Frederick, 1991). During their 
last 3 years in high school, 19% lost interest in their STEM subjects. During undergraduate university 
science and engineering programs, 39% lost interest—twice the proportion of STEM students in high 
school. For governments and industry concerned with their country’s economic future reliant on STEM 
employees, they need to intervene at the university level where the major problem lies. The number of 
STEM graduates from high school is not the problem.

The Platonist dominance over a large majority of learners (Grades 7–12) and the general public 
requires scrutiny. This article does so by exploring Platonist mathematics’ cultural nature, first histori-
cally (What should we know about the decisions that led to the first school mathematics curriculum?) 
and then philosophically (Is Platonist mathematics really what mathematicians claim it is?).

Establishing the First School Mathematics Curriculum

I strongly suggest that the math-phobic, math-shy, and math-disinterested students’ generally low pro-
ficiencies are not the root problem to be solved by educators. Instead, a more basic underlying problem 
is an inappropriate school mathematics curriculum anchored to standards defined by nineteenth-century 
university mathematicians and designed strictly for math-oriented learners (Aikenhead, 2017; Barta 
et al., 2014). These mathematicians apparently, but wrongly, either assumed that the majority of stu-
dents would possess a mathematical worldview that harmonised with their own, or assumed that these 
students’ minds were a tabula rasa. These stances are ego-centred and outdated, respectively.

The problem of conflicting subcultures, defined above, can be traced to the decision that produced 
the first mathematics curriculum for public schools. A thorough in-depth description can be found in 
Aikenhead (2017). A synopsis is offered here.

Europe’s post-Industrial Revolution created the need to establish public school systems in Europe and 
North America during the first half of the nineteenth century (Furr, 1996; Nikolakaki, 2016; Willoughby, 
1967). The decision over its mathematical content was highly controversial between (a) the elite univer-
sity’s Platonist mathematicians anticipating students proficient in abstract mathematics and (b) the local 
merchants and emerging industries that needed a labour force proficient at practical mathematics.

The Platonist mathematicians, channelling ancient Greek beliefs in the superiority of pure abstract 
thought (“Plato’s World of Ideas;” Kawasaki, 2002, p. 93), insisted on abstract decontextualised content 
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for the curriculum. Platonists eschewed worldly practical knowledge (“Plato’s Phenomenal World”; 
Kawasaki, 2002, p. 94) connected with human activity, which would produce a curriculum of contex-
tualised content dealing with the people.

The Platonists won the politically charged curriculum debate using deceptive strategies that were 
rendered invisible to future generations (Ernest, 1991). These strategies ensured there would be no 
fundamental change to the curriculum over the ensuing 170 years. This article proposes that our twenty-
first-century culture requires a fundamental revision to school mathematics’ repertoire of sense-making 
practices for the 70% but not much revision for the 30% minority of math-oriented, math-curious, and 
math-interested learners in junior and senior secondary school.

The nineteenth-century Platonists’ surreptitious strategies and rhetorical sleights of hand were ana-
lysed by Ernest (1991) who concluded, “[T]he values of the absolutists are smuggled into mathematics, 
either consciously or unconsciously, through the definition of the field” (p. 259, emphasis added). He is 
referring to the Platonists’ transformation of the ancient Greek binary, logical versus irrational, into their 
newly invented binary, formal mathematical discourse versus informal mathematical discourse. Then the 
Platonists defined school mathematics as formal mathematical discourse (Plato’s World of Ideas) and any 
content that suggested mathematics was a human endeavour (Plato’s Phenomenal World) was jettisoned 
into the informal mathematical discourse category and out of sight, unworthy of curriculum content.

Simply put, the fact that nineteenth-century Platonists’ rhetoric can reach into the twenty-first century 
to stifle much needed innovation today speaks to the urgency to challenge their non-ideological ideolo-
gies. Borovik (2017) documented quantitatively the disparity between the Victorian nineteenth-century 
life and the digital age of the twenty-first century with its sophisticated algorithms that substantially 
decrease the mathematics needed by the general public, and at the same time, it decreases the need for 
PhD mathematicians due to artificial intelligence replacing them in high-technology fields. Borovik 
concluded, “[T]he current crisis in school-level mathematics education is a sign that it reaches a bifur-
cation point and is likely to split into two streams” (p. 309).

Challenges to Platonist Mathematics

Platonists claim their pure mathematics is value-free, non-ideological, culture-free, purely objective 
in its use, perfectly certain, and accurate in descriptions of reality. As it turns out, this is a façade that 
masks Platonists’ power with the claimed innocence of “absolute objectivity and neutrality” (Ernest, 
1991, p. 259). One purpose for challenging Platonist mathematics is to replace its non-humanistic façade 
with a nuanced humanistic Western mathematics perspective. The adjective “Western” is an important 
reminder that mathematics is pluralistic amongst many cultures, past and present.

Fundamentals of Platonist Mathematics

In the Stanford University Encyclopedia of Philosophy, Linnebo (2018) summarises the fundamentals 
of Platonist mathematics as:

Existence [ontology]: There are mathematical objects.

Abstractness [epistemology]: Mathematical objects are abstract.

Independence [axiology]: Mathematical objects are independent of intelligent agents and their 
language, thought, and practices. (website quote)

In other words, Plato’s “abstract mathematical objects” comprise the concrete universe as we know 
it. Accordingly, mathematicians do not create or invent an abstract object; they discover it (Kessler, 
2019). The expression “abstract objects” seems to be an oxymoron. If these abstract objects are neither 
physically concrete (because they are abstract) nor of an intelligent agent, what are they?
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Aikenhead (2021a) investigated this issue of abstract mathematical objects but changed the ontologi-
cal question (What are they?) to an epistemic one: “How can we explain their concrete appearance?” (in 
press). The result was a narrow dichotomy:

1.	 They might arise from “divine inspiration,” described by, but not endorsed by Sriraman (2004, p. 
22). This spiritual characterisation of Plato’s abstract mathematical objects was plausible to some 
writers (e.g., Kessler, 2019; Nightingale & Sedley, 2010; Phillips, 2009).

2.	 They are an intellectual mirage: “What has been thought of as the mind is actually internalised 
culture” (anthropologist Hall, 1976, p. 192, original emphasis). Thus, Plato’s source of his abstract 
objects is his culture, which causes his abstract objects to be cultural entities rather than spiritual 
entities, which in turn means that Platonist mathematics is fundamentally cultural.

A third position, of course, supports mathematical Platonism, explained by Gordon (2019) in the 
context of Ancient Greek history, and thoroughly documented by Cole (2009, n.d.), who reported, “Pla-
tonists take the mathematical realm to be quite distinct from the spatial–temporal realm” (n.d.). Impor-
tantly, Cole’s quote indicates that the Platonists have introduced the language of two different “realms” 
into a dichotomous axiom which leads directly to a theorem-like, logically tight, deductive argument.

It all looks very familiar: the language of “discourses” introduced into a dichotomous axiom, formal 
versus informal mathematical discourses (i.e., logical versus irrational). In the nineteenth century, this 
rhetorical tactic powerfully and politically legitimised the Platonist school curriculum we have today 
for Grades 7–12. On the surface, the tactic suggests opportunism. Beneath it, however, lies raw social-
political power, masked by the innocence of its public façade of an intellectual, value-free, culture-free 
game called “Platonist Mathematics” (McKinley, 2001). The tactic of constructing two-different-realms 
may provide Platonists with a defence against a claim it is spiritual. A deductive argument will always 
produce a “truth” as long as it is crafted to be self-consistent.

Culture‑Laden Platonist Mathematics

Based on his research interviewing mathematicians, Kessler (2019) stated, “My conclusion is that there 
is indeed something of a spiritual nature inherent in mathematics itself” (p. 59, original emphasis). Fun-
damentally, therefore, Platonist pure mathematics is either spiritual or cultural or engaged in another 
opportunistic power move. The choice of Western mathematics being cultural would present school 
jurisdictions with far fewer political issues to handle, I suggest.

A cultural mathematics is the reasoned conclusion by critical mathematics educators (e.g., Bishop, 
2016; Ernest, 1988, 2016a, b; Larvor, 2016; Sriraman, 2017; Skovsmose & Greer, 2012). It is rooted in 
the culture of those who created the knowledge, or modified it by the culture of whoever appropriates 
it, as Western mathematics did with Islamic and Ancient Greek mathematics. Some of these cultural 
attributes have contributed to Western mathematics’ humanistic dimensions, which can be related mean-
ingfully to learners’ cultural self-identities (Darragh & Radovic, 2018; Ishimaru et al., 2015; Nasir, 
2002). Bishop (1988) recognised this double function when he stated that mathematics is a product 
of its developer’s culture and “as a cultural product, [it] is now strongly shaping Western culture as a 
whole” (p. 155).

Value‑Laden and Ideology‑Laden Platonist Mathematics

This issue is especially critical for the 70% of high school graduates: the math-disinterested, math-shy, 
and the math-phobic. Their usual perception of mathematics is “the antithesis of human activity—
mechanical, detached, emotionless, value-free, and morally neutral” (Fyhn et al., 2011, p. 186), as 
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well as being decontextualised, abstract, and rigid. This anti-humanistic school mathematics makes the 
content seem foreign to this significant majority of learners’ self-identities, and therefore, difficult to 
learn (Aikenhead, 2017; Ruef, 2020). A humanistic mathematics program would replace the Platonist 
value-free ideology-free façade. Ernest (2016a) pointed out that:

[S]ome of mathematics is contingent on human history and culture and thus it allows that math-
ematics itself can be imbued with the values of the culture of its human makers. Overall, a conse-
quence of redefining objectivity as cultural is that mathematics can be understood as being laden 
with values from human culture. (p. 193, emphasis added).

Platonists’ assertions that their mathematics is value-free and ideology-free were also critically chal-
lenged by Bishop (2016) and Corrigan and colleagues (2004). Together all three research groups, 
amongst others, identified and articulated the following values: truth, certainty, universalism, mystery, 
beauty, purity, mathematical realism, provability, and absolute accuracy in descriptions of reality. A 
sampling of these is described here to establish the statement: Platonist mathematics is value-laden and 
ideology-laden.

The Platonist values of certainty, truth, and purity lay claim to absolute pure mathematics knowledge. 
However, Ernest (2016a) warned, “prized as it is the attainment of the value of truth in mathematics is 
not without difficulty” (p. 194). Gödel’s Incompleteness Theorems in mathematics has also proven that 
this aim is unattainable (Raatikainen, 2020).

Similarly, Einstein (1921) stated, “As far as the laws of mathematics refer to reality, they are not 
certain, and as far as they are certain, they do not refer to reality” (website quotation). The absolutist 
language of the Platonist expression “pure knowledge with certainty” amounts to another oxymoron, 
a façade behind which to treat people according to several of its ideologies, thereby masking Platonist 
mathematics’ social-political power with its presumed innocence of possessing certain pure knowledge 
(McKinley, 2001).

Ideologies denied by Platonists but identified by the mathematics research literature include (1) ration-
alism, objectivism, empiricism, progress, openness, mystery, and control (Bishop, 2016; Corrigan et al., 
2004) and (2) purism, quantification, dominance, instrumentalism, and foundationalism (Ernest, 2016b).

The ideology of purism (Ernest, 2016b), for instance, is described in more detail here. The expres-
sion “pure mathematics” implicitly suggests the category “impure mathematics,” on the strength of 
mathematicians’ ubiquitous use of dichotomies. Subtly, a hierarchy of status is established by this 
dichotomous language: pure or impure. This was played out, for example, at some universities when 
their Department of Mathematics renamed itself Department of Mathematics and Statistics. The ide-
ology of purism “denigrates applied mathematics [such as statistics] and calculation as technical and 
mechanical, pertaining to the utilitarian, practical, applied, and mundane, understood as the lowly 
dimensions of existence” (Ernest, 2016a, p. 209). “Purism is an intellectual strategy serving social goals 
including the demarcation of knowledge and defending the pursuit of knowledge for its own sake from 
outside interests” (p. 210). This defence includes opposing innovative educators wishing to humanise 
school mathematics curricula for a majority of learners—the 70% defined above. “Purism…emphasises 
boundaries that strongly demarcate disciplines and social groups, pure mathematics, and the community 
of pure mathematicians” (p. 210). Purism “facilitates purist values by locating mathematical objects in 
a pure and ideal realm disconnected from the material world we inhabit” (p. 209).

The ideology of quantification “valorises the measurable outputs of knowing over those that are less 
easily measured” (Ernest, 2016b, p. 52). Quantification can harmfully lead to “the objectification and 
commodification of knowledge” (p. 52), so that knowledge appears to be objective, but turns out not to 
be when we consider its context. This is illustrated by Boylan (2016):

A significant capitalist response to the environmental crisis has been to enlist mathematics in 
the search for market solutions. Under the banner of green capitalism, mathematics is being 
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used as a means to extend the commodification of natural resources in new ways… The value 
and worth of the natural world and our relationship to it are transmuted into valorisation; eve-
rything—water, trees, clean air, biodiversity and ecosystems—can be given a price. (p. 402).

In Ernest’s (2016b, 2019) view, whenever the content of mathematics wanders beyond its intel-
lectual domain in the human mind (e.g., when someone projects a concept onto the physical world, 
teaches a concept to someone, and plans or undertakes a course of action based on that concept), 
this Platonist mathematics beyond the mind was never pure in the sense of being ethics-free. The 
entwined combination of mathematics and a user of mathematics must take responsibility for the 
consequences of using Platonist mathematics and not hide behind its façade of innocent objectivity 
(Ernest, 2019). For instance, when you hear someone claim, “The numbers speak for themselves,” 
be particularly vigilant in analysing whether or not they are attempting to identify with mathemat-
ics’ purism ideology.

To summarise, this interrogation into the nature of Platonist mathematics has provided evidence 
and explanations for knowing it as a human endeavour, characterised by various ontological and 
epistemological beliefs (some of which are controversial), and by values and ideologies. No longer 
tenable or truthful is its façade of being value-free, non-ideological, culture-free, purely objective 
in its use, and perfectly certain and accurate in its descriptions of reality.

Humanistic Curricula

Voices from the mathematics education culturalists (e.g., Larvor, 2016; Pierce & Stacey, 2006) and 
the critical mathematics educators (e.g., Ernest et al, 2016; François & Van Kerkhove, 2010) offer 
support for learners to experience and understand “mathematics as a human endeavour” (Saskatchewan 
Curriculum, 2008, p. 9). “We take it as self-evident that mathematics must be understood as a human 
activity, a social phenomenon, part of human culture, historically evolved, and intelligible only in a 
social context” (Hersh, 1997, as quoted by Skovsmose & Greer, 2012a, p. 379). Ernest (1991) pointed 
out that mathematics is the product of mathematicians’ human creativity, and as a result, it bears some 
cultural features of its inventors—a very humanity-like stance to take.

“Humanistic” and “culture-based” school mathematics could be understood as two sides of the same 
coin, differing only in degrees of emphasis and often overlapping to a large extent. Meyer and Aikenhead’s 
(2021) mathematics research dealt with enhancing school mathematics with Indigenous mathematizing. 
They named it “Indigenous culture-based school mathematics” (p. 100). It, too, is a humanistic mathemat-
ics applicable to countries with Indigenous citizens. Culture-based school mathematics’ content emphasise 
the needs of non-STEM adults, as judged by those adults, not by mathematics educators.

In general, any mathematics curriculum or lessons will earn the moniker “humanistic,” if

•	 They clearly specify or exemplify that Western mathematics is a human endeavour.
•	 Their mathematical symbols and manipulations reveal or forge relationships between learners 

and their social, political, and physical environments.
•	 Their mathematics content is enhanced by “the history and nature of mathematics” (Panasuk 

& Horton, 2012, p. 17, original emphasis) as well as by its interactions with societal issues and 
cultural perspectives.

•	 They convey their school mathematics as being predominantly value-laden, culturally contextu-
alised, ideology-related, and/or authentically subjective in its use.

•	 They avoid a disconnect with learners whose “minds are grounded in systems of social rela-
tions… and [mathematics] concepts must be understood as elements of those systems” (Ojalehto 
& Medin, 2015, p. 9). Learners need to connect personally with what they learn.
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However challenging, teachers need to connect with learners whose worldviews do not include, to 
varying degrees, the facility to abstract mathematical symbolic technologies and apply them to a con-
crete situation or event.

Examples of Humanistic Lessons and Modules

The first example is a pair of different trigonometry units: one for a non-STEM group and the other for 
a STEM group (Bressoud, 2010).

A.	 A while back, studying trigonometry was most likely for navigation and surveying, when defining 
these functions as ratios made sense. An authentic-like story of survival at sea due to navigating 
accurately would make a humanistic context for the 70% group.

B.	 Today, STEM learners are likely to study trigonometry’s sine and cosine as periodic functions. 
“Biological, physical, and social scientists use them more often to model periodic phenomena” (p. 
112). A social science theme could be composed to create a humanistic context.

A country’s Remembrance/Memorial Day celebration is another venue for humanistic mathematics 
lessons that were developed by K.G.B. Secondary College (n.d.) for Grade 9:

1.	 Pythagoras theorem to calculate the size of trenches; estimate means and medians.
2.	 Perimeter and area of WW I trenches through partitioning composite shapes.
3.	 Using ratio factors to create a down-sized replica of WW I trenches.

A twenty-first century commerce-related humanistic module for the 70% will look very different 
than a typical high school textbook unit on financial literacy. For example, Saskatchewan’s textbook, 
Foundations of Mathematics 12 (Canavan-McGrath,  2012), devotes 141 pages to “Unit 1: Financial 
Mathematics,” comprised mostly around algebraic formula manipulations and calculations concerning 
compound interest related to savings and loans. It does offer savvy advice on credit cards. Two subcon-
cepts are actually associated with this textbook unit: (a) Platonist algebraic literacy and (b) a relevant 
context into which abstract algebra is applied. For these two reasons, Unit 1 is not an example of a 
humanistic Western mathematics unit.

To be authentic, students would learn the deep meaning of all the important financial concepts and 
their consequences, but in the authentic context of the twenty-first-century financial industry, by using a 
computer algorithm on the internet. If feasible, learning is identified with a local context, such as specific 
banks or a learner’s parent, thereby connecting their learning with real humans, rather than hypothetical 
humans. Some learners experience their role as participating in an introductory internship to the industry, 
or as problem solving and problem posing in a project-based learning setting (Boaler & Selling, 2017).

This is qualitatively different than forming an abstract concept from a textbook and then applying it 
hypothetically. That two-step process usually separates the math-phobic, math-shy, and math-disinterested 
learners from the math-interested, math-curious, and math-oriented learners. An unpublished module 
equivalent to the textbook’s Unit 1 took one third the time to complete, which left time for students to 
explore some history of mathematics: Where did all this financial mathematics come from?—an excellent 
context for humanistic content.

Some teachers have their favourite activities that meet the criteria of a humanistic lesson or a set of 
lessons, which result in students’ enthusiastic engagement. The following unpublished modules will 
help clarify further what a humanistic mathematics lesson or module looks like.

In a module “Music in the Numbers,” Grade 7 learners are introduced to or re-enforced by the addi-
tion and subtraction of fractions. They are taught by their musical peers: (a) to identify musical beats 
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in several different songs by clapping the beats (experiencing full notes to sixteenth notes); (b) to learn 
the symbols for each type of beat length; (c) to learn that a 4:4 signature bar on a musical staff contains 
the equivalent of one full beat; (d) to practice making several combinations of different beats that could 
fit into one bar; and (e) to solve the problems when a bar has too few beats in it, and needs someone to 
fill it accurately.

The lesson ends with the teacher writing the fraction symbols in the bottom empty row of a chart of 
musical beat symbols, and then repeating the very same problems but this time with the fraction sym-
bols. Learners transfer the concepts learned with concrete musical fractions to abstract mathematical 
fractions. The abstract mathematical meaning of fractions may mature with similar problem solving in 
other everyday situations (not hypothetical situations) that involve fractions.

Another example of a humanistic mathematics module is entitled “Why Is Math So Abstract?” At 
a Grade 10 interest and reading level, it presents a historical synopsis focussed on Thales of Miletus. 
Learners engage in activities, such as writing their date of birth using one of the several Ancient Greek 
numeral systems, which does not have a zero, of course. Some learners will ask, “Who invented zero?” 
They have just initiated an authentic historical investigation for the whole class to conduct out of school. 
Their post-investigation class discussion will naturally include the question, “Why are there so many 
different answers to: Who invented zero?” The teacher can then introduce learners to mathematics’ 
interaction with society’s culture, such as Who gets to write history? and What influence does culture 
have on the development of mathematics today? (e.g., the industrial and military demand for artificial 
intelligence algorithms). Simply put, the module provides insights into humanistic features of Western 
mathematics related to societal issues. Often, Western mathematics does have important roles to play 
in social/political/ethical issues.

In this next example, learners interact with the Hollywood movie Hidden Figures to witness and 
discuss the development of a sophisticated algorithm that brought astronaut John Glenn safely back to 
earth in 1962, the first American in space and the first human to circle the Earth in an orbit. The module 
introduces learners to exponentials, scientific notation, some authentic problem-solving using scientific 
formula (not to manipulate, but to act as scaffolding for calculations), and the need to know some ana-
lytical geometry in order to follow the action in the movie. Three Black employees of NASA, under the 
duress of systemic racism, were instrumental in the project’s success. Mathematics played several key 
roles in the societal issue of systemic racism, as it does today (Bellringer, 2019).

The last example, “Logical Thinking,” a module for Grade 11, has activities that draw on topics such 
as court cases related to drinking and driving, symbolic logic for analysing everyday conversations or 
arguments with family or classmates, and some common Aristotelian fallacies of arguments for students 
to hone their reasoning skills in terms of everyday events. Within these contexts, the following West-
ern mathematics topics are explored: error of measurement, an intellectually honest simplification of 
confidence intervals, the public’s misinterpretations of polls and PISA scores (including the politics of 
international testing), artificial intelligence, and a critical logical analysis of the mathematics theorem 
concerning the sum of the interior angles of a triangle—find the ambiguity in it.

In all the examples above, learners are deeply engaged using symbolic technologies in developing 
relationships between themselves and their social and physical environments (Bishop, 1988).

However, a major roadblock to humanistic school mathematics is “the highly restrictive, over-
crowded, outdated curriculum” (Duchscherer et al., 2019, p. 63). This prevents teachers from having 
the time to innovate with humanistic lessons and at the same time, complete teaching their mandated 
Platonist curriculum. The Conference Board of Canada (2020) advised, “Some [mathematics] content 
may be removed to make room for more innovative material” (p. 15). As mentioned earlier, the problem 
is not the learners; it is the adults who determine the curriculum content, processes, and most impor-
tantly, the context of learning that exacerbates the two conflicting subcultures detrimental to a large 
majority of learners.
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“New curriculum reform projects will have to find different ways to create and distribute the innova-
tive materials that can drive change” (Conference Board of Canada, 2020, p. 27). A detailed template 
for doing so is available: “The Ministry of Education could establish cadres of developers of teaching 
materials” (Duchscherer et al., 2019, p. 71). A number of other challenges need to be addressed, such 
as mathematics teachers’ reluctance to learn some of the history of the subject they teach. These chal-
lenges were identified by Panasuk and Horton’s (2012) research.

Conclusion

To paraphrase Bang and Medin (2010) quoted in the section “Culture:” life in a humanistic mathematics 
classroom will be comprised of cultural sense-making practices in which a majority of learners naturally 
participate, because the content supports their understanding of mathematics as a human endeavour in 
their world. This resolves, or at least ameliorates, a conflict that learners otherwise encounter to varying 
degrees, a conflict between, on the one hand, learners’ humanities-oriented self-identities that embrace a 
host of connective values, and on the other, a non-humanistic Platonist school mathematics curriculum 
emphasising separative values (Ernest, 2016a, b; Gilligan, 1982). These learners are in a much better 
position to succeed in reaching their full mathematical potential for adulthood.

Extensive international research on Indigenous culture-based school mathematics has demonstrated 
a consistent increase in learner proficiencies measured by standardised mathematics tests (reviewed in 
Aikenhead, 2017). To produce similar results for humanistic school mathematics is a research program 
worth pursuing.
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